

Home Search Collections Journals About Contact us My IOPscience

The optical properties of Eu^{3+} embedded in the rare earth borogermanate matrix: REBGeO₅

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1994 J. Phys.: Condens. Matter 6 6857 (http://iopscience.iop.org/0953-8984/6/34/017)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.151 The article was downloaded on 12/05/2010 at 20:22

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 6 (1994) 6857-6864. Printed in the UK

The optical properties of Eu^{3+} embedded in the rare earth borogermanate matrix: REBGeO₅

E Antic-Fidancev[†], K Serhan[‡], M Taibi[‡], M Lemaitre-Blaise[†], P Porcher[†], J Aride[‡] and A Boukhari[§]

† Laboratoire de Chimie Métallurgique et Spectroscopié des Terres Rares, UPR 209 du CNRS, 1 Place Aristide Briand, 92195 Meudon, France

‡ Laboratoire de Physico-Chimie des Matériaux, Ecole Normale Supérieure de Takaddoum, BP 5118 Rabat, Morocco

§ Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Rabat, Morocco

Received 6 April 1994, in final form 10 June 1994

Abstract. The luminescent properties of the trivalent europium ion in two borogermanate matrices, LaBGeO₅ (trigonal) and GdBGeO₅ (monoclinic), have been analysed. The energy level schemes of the 24 and 20 $^{7}F_{J}$ (J5 = 0.4) electronic levels are well reproduced with 14 (LaBGeO₅) and 9 (GdBGeO₅) crystal field parameters (CFPs) according to the local point site symmetry occupied by the rare earth element in the matrix.

1. Introduction

Two crystallographic varieties of the REBGeO₅ system are found. For the larger rare earth ions, RE = La, Pr and Nd (low-temperature phase) a trigonal phase having the stillwellite (CeBSiO₅) structural type can be obtained [1–6, 8]. For the smaller ones, i.e. Nd (hightemperature phase) Er and Y, a monoclinic phase exists, with the datolite structural type [5,7]. For other rare earths (Tm, Yb, Lu) this stoichiometry probably does not exit, and even GdBGeO₅ is difficult to obtain free of pyrogermanate Gd₂Ge₂O₇. Verwey *et al* [9] studied the luminescence processes in the crystalline and glass modifications of Eu³⁺doped REBGeO₅-type compositions at 300 K, whereas Lysanova *et al* [6] published the luminescence spectra of GdBGeO₅:Eu³⁺ at room temperature and Kaminskii recently studied LaBGeO₅:Nd³⁺ [10]. The interest of these compounds is their potential use as an effective self-frequency-doubling mini-laser. It is thus important to study their optical properties in order classify these compounds among the laser matrices and derive the knowledge of the wavefunctions, which are necessary to interpret the excited states dynamics in that system.

2. Experimental details

Polycrystalline samples of REBGeO₅:2% Eu³⁺ were synthesized by solid state reactions between high-purity RE₂O₃ (or Pr₆O₁₁), H₃BO₃ and GeO₂ as starting materials. The stoichiometric mixture is ground and progressively heated in a platinum crucible at 850 °C over 24 hours. The resulting compound is ground again and heated for a further 24 hours at 1100 °C. In order to avoid the formation of the pyrogermanate phase RE₂Ge₂O₇, especially in the case at the end of the rare earth series, some preparation was carried out with a small

excess of H_3BO_3 (~25% per mole). The samples were checked by the x-ray diffraction technique. For the trigonal lanthanum compound a single phase was obtained, but for the monoclinic gadolinium compound an impurity phase was detected which is identified as the pyrogermanate.

Figure 1. The geometry of LaO₉ polyhedron in LaBGeO₅ trigonal phase. Interatomic distances are given in 10^{-1} nm (from [8]).

The 457.9 nm blue line of a 5 W argon ion laser was used to excite the ${}^{5}D_{2}$ level of Eu³⁺ in REBGeO₅ matrix, allowing the classical emitting and/or quenching cascade ${}^{5}D_{2} \rightarrow {}^{5}D_{1} \rightarrow {}^{5}D_{0}$. Selectively excited emission of the ${}^{5}D_{0}$ level of Eu³⁺ was performed also by using a continuous wave rhodamine-6G dye laser pumped by an argon ion laser. Non-polarized fluorescence spectra were recorded at 77 K in the 520–750 nm wavelength range through a 1 m Jarrell-Ash monochromator equipped with a Hamamatsu R374 photomultiplier. The spectral resolution is then better than 1 cm⁻¹.

3. Crystal structure

For the rare earth borogermanates series with the general formula REBGeO₅, two different crystallographic modifications have been found [5, 6]. For RE = La, Pr (Nd low-temperature phase) the compounds crystallize in the structure type of stillwellite, space group $C_3^2-P3_1$ (No 144), [3,4,8]. In that phase the single point symmetry site of the rare earth ion is very low, C₁. The rare earth ion is ninefold coordinated as shown in figure 1 (from [8]). The variety with RE = Nd-Er, Y crystallizes in the datolite-type structure, CaBSiO₄(OH). The unit cell symmetry is monoclinic with $P2_1/a$ (No 14) as space group. The rare earth ion is surrounded by eight oxygen atoms forming a distorted cube [7]. According to the crystallographic structure, the point site symmetry of the rare earth ion can be C₁ or C₁.

Figure 2. A part of fluorescence spectra of LaBGeO₅:Eu³⁺ at 77 K.

The analysis of the luminescence properties of the Eu^{3+} in the monoclinic borogermanate modification confirms this feature, although we can suspect the symmetry to be close to a higher one (with a ternary axis). Both rare earth borogermanate modifications contain BO_4 and GeO_4 tetrahedra in an ordered arrangement.

4. Results and discussion

The two compounds studied fluoresce reasonably well. Under 457.9 nm argon ion laser excitation at 300 and 77 K, the radiative deexcitation between ${}^{5}D_{2}$, ${}^{5}D_{1}$ and ${}^{5}D_{0}$ levels occurs and almost all emission observed arises from the ${}^{5}D_{0}$ level. This efficient quenching

Figure 3. A part of fluorescence spectra of GdBGeO_5:Eu^{3+} at 77 K; the Gd_2Ge_2O_7 phase is also observed (*).

is favoured by multiphonon relaxation of the excitation energy which considers the lattice phonons of highest energy (~800 cm-1 for the GeO₄ group [5]). The ${}^5D_0 \rightarrow {}^7F_1$ and ${}^5D_0 \rightarrow {}^7F_2$ electronic transitions are of similar intensity in both compounds, but the more intense spectra are obtained for the trigonal phase. The ${}^5D_0 \rightarrow {}^7F_0$ transition is observed, and is seen to be single and not very intense (figure 2 and figure 3). By applying both group theory and electric dipole transition selection rules, this feature is only compatible with C_n , $C_{n\nu}$, or C_s point symmetries for the rare earth ion [11]. By using selective dye laser excitation, only the fluorescence from the 5D_0 level is recorded, permitting the construction of the partial energy level scheme for the 7F_J (J = 0-4) ground multiplet.

4.1. The trigonal phase

The analysis of other transitions shows that the degeneracy of the J levels is completely lifted for the trigonal phase which does not permit a point site symmetry higher than C₂. In fact, the real symmetry is C₁ according to and in agreement with the crystallographic data. The crystal field splitting of the ⁷F₁ level is one of the largest of the europium compounds. The exceptions are oxyapatites $Ca_{10-x}Eu_x(PO_4)_6O_{1+x/2}$ [12] and oxides with the byxbite structure (S₆ site) [13]. The overall splitting is 476 cm⁻¹ (about 650 cm⁻¹ for oxyapatites) and the position of the ⁵D₀ level is relatively high, situated at 17 350 cm⁻¹ and 17 510 cm⁻¹ for oxyapatites, and about 17 300 cm⁻¹ for oxide). This indicates a large absolute value for the crystal field parameters of rank 2. The rather complete energy level scheme permits a simulation in a C₂ symmetry, considered as an approximation of the C₁ real symmetry.

	LaBGeO5		GdBGeO5	
^{2S+1} L ₇ level	E (exp.)	E (calc.)	E (exp.)	E (calc.)
⁷ F ₀	0	0	0	0
⁷ F ₁	242	239	262	262
	293	299	427	424
	718	715	430	432
⁷ F ₂	867	859	914	9 14
	900	890	942	941
	1145	1153	1070	1075
	1264	1275	1092	1092
	1359	1354	1205	1206
7 _{F3}	1781	1792		1813
	1804	1805	1908	1905
	1966	1975	1931	1930
	1992	2007		1953
	2044	2038	1966	1968
	2079	2070	<u> </u>	1984
	2161	2136	1989	1989
⁷ F4	2748	2734	_	2737
	_	2855 -	2750	- 2750
,	2936	2931	2782	2781
	2954	2954	2866	2865
-	2986	2992	,	2895
	3032	3028	2977	2978
	3065	3071	3031	3028
	3108	3121	3058	3058
	3208	3206	—	3188
⁵ D ₀	17350		17244	_

Table 1. Experimental and calculated crystal field energy levels of the Eu^{3+} ion in two REBGeO₅ modifications at 77 K. All values in units of cm^{-1} .

4.2. The monoclinic phase

We observed three and five Stark levels for ${}^5D_0 \rightarrow {}^7F_1$ and ${}^5D_0 \rightarrow {}^7F_2$ transitions respectively. This suggests a low point symmetry like in the trigonal phase. In fact, four weak transitions are observed for ${}^5D_0 \rightarrow {}^7F_3$ (from seven allowed) and six (from nine) for ${}^5D_0 \rightarrow {}^7F_4$ transitions. Moreover, the two upper Stark levels of 7F_1 are separated by only

 3 cm^{-1} , whereas several ${}^5D_0 \rightarrow {}^7F_2$ components are also close together. This fact suggests that the point symmetry is close to a higher one, probably with a ternary axis (C₃ or C_{3v}). In their analysis of the same compound Verwey *et al* [9] observed two and three lines for the ${}^5D_0 \rightarrow {}^7F_1$ and ${}^5D_0 \rightarrow {}^7F_2$ transitions, which is probably due to low resolution of the apparatus and measurements at 300 K. Practically the assumed crystal field symmetry will be C_{2v}. The overall splitting of the 7F_1 level is much smaller (168 cm⁻¹) than for the trigonal phase and the 5D_0 energy position at 17 244 cm⁻¹ is lower than in the trigonal phase.

	LaBGeO₅	GdBGeO ₅
	C ₂	C _{2v}
$\overline{B_0^2}$	-434	621
B_2^2	891	-38
$B_0^{\overline{4}}$	968	-321
B_2^4	-606	-1263
$S_2^{\overline{4}}$	570	_
B_4^4	436	-854
S_4^4	-306	<u> </u>
B ⁶ 0	75	-929
B_{2}^{6}	-372	-51
$S_2^{\tilde{6}}$	-736	<u> </u>
B_{4}^{6}	70	-160
S_{4}^{6}	349	_
B_{6}^{6}	-331	-39
56	-169	
Levels	24	20
RMS	i1.8	2.4

Table 2. The phenomenological $B_q^k(S_1^k)$ crystal field parameter values for the Eu³⁺ ion in two REBGeO₅ modifications. All values are in units of cm⁻¹.

4.3. Simulation of the energy level schemes

The europium trivalent ion $(4f^6 \text{ configuration})$ is very convenient for the crystal field calculation. The ground ⁷F term is almost isolated from the rest of the configuration, the first excited level, ⁵D₀, being situated at about 12 000 cm⁻¹ above ⁷F₆. That means that the ⁷F_J wavefunctions are almost pure in ⁷F states. The crystal field calculation can be performed accurately on a very reduced 49 × 49 basis of the ⁷F_J multiplet [14].

The crystal field potential is written as follows

$$H_{\rm cf} = \sum_{kq} B_q^k \Big[C_q^k + (-1)^q C_{-q}^k \Big] + {\rm i} S_q^k \Big[C_q^k - (-1)^q C_{-q}^k \Big].$$

The number of non-zero CFPs depends on the symmetry: 27 for the C_1 symmetry, nine for C_{2v} , and 15 for C_2 .(14 when S_2^2 is set to zero by an appropriate choice of the reference axis). The experimental and calculated energy level schemes of Eu^{3+} in two borogermanate crystallographic modifications are gathered together in table 1 [15]. The two sets of CFPs reproduce the observed fluorescence data i.e. 24 observed from 25 expected $^7F_{0-4}$ levels of LaBGeO₅: Eu^{3+} with RMS of 11.8 cm⁻¹ and a residue of 2078.4 cm⁻¹ on one hand, and 20 $^7F_{0-4}$ levels of GdBGeO₅: Eu^{3+} with RMS of 2.4 cm⁻¹ and a residue of 56.9 cm⁻¹ on the other hand (table 2). The last result confirms the assumption for a point symmetry close to an higher one.

- [1] McAndrew J and Scott T R 1955 Nature 176 509
- [2] Gay P 1956 Miner. Mag. 31 465
- [3] Voronkov A A and Pyatenko Yu A 1967 Crystallography 12 214
- [4] Callegari A, Giuseppetti G, Mazzi F and Tadini C 1992 Neuef Jahnbuch für Mineralogie Monatshefte (Germany) 49
- [5] Rulmont A and Tarte P 1988 J. Solid State Chem. 75 244
- [6] Lysanova G V, Dzhurinskii B F and Komova M G 1989 Izv. Akad. Nauk SSSR Ser. Neorg. Mater. 25 632.
- [7] Belokonova E L, Mill B V, Butashin A V and Kaminski A A 1991 Izv. Akad. Nauk. SSSR Ser. Neorg. Mater. 27 556
- [8] Kaminski A A, Mill B V, Belokoneva E L and Butashin A V 1990 Izv. Akad. Nauk. SSSR Ser. Neorg. Mater. 26 1105
- [9] Verwey J W M, Van der Voort D, Dirksen G J and Blasse G 1990 J. Solid State Chem. 89 106
- [10] Kaminski A A, Bagaev S N, Butashin A V and Mill B V 1993 Izv. Akad. Nauk. SSSR Ser. Neorg. Mater. 29 545
- [11] Blasse G and Bril A 1966 Philips Res. Rep. 21 368
- [12] Piriou B, Fahmi D, Dexpert-Ghys J, Taitai A and Lacout J L 1987 J. Lumin. 39 97
- [13] Antic-Fidancev E, Aride J, Lemaitre-Blaise M, Porcher P and Taibi M 1992 J. Alloys Compounds 188 242
- [14] Porcher P and Caro P 1976 J. Chem. Phys. 65 89
- [15] Porcher P 1989 Computer Routine REEL for Simulation of the nd^N and nt^N Configurations unpublished